PX4 FLIGHT CORE

http://px4.io

РІХ Пашк STUDENT PROJECT

- Student team 2009, research since 2011
- EMAV 2009 Competition: 1st
- IMAV 2010 Competition: 2nd

COMPUTER VISION AND GEOMETRY LAB

- Institute for Visual Computing, Computer Vision and Geometry Group (Prof. Marc Pollefeys)
- PIXHAWK (2008-) and sFLY (2008-2011) projects
- Using Asctec and PX4 hardware

SWISS LOVE DRONES

DRONES LOVE SWITZERLAND

ZURICH SCHWEIZ AUSLAND WIRTSCHAFT BORSE SPORT KULTUR PANORAMA LEBEN AUTO DIGITAL BLOGS MEHR▼

Computer & Software Mobil Internet Wild Wide Web Multimedia Social Media Preisvergleich Bildstrecken

DOSSIER: DAS GRÖSSTE SOZIALE NETZWERK

«Die Schweiz ist das Silicon Valley der Robotik»

Von Alain Zucker. Aktualisiert am 04.04.2013

Internetguru Chris Anderson prophezeit eine neue industrielle Revolution. Diesmal will er als Unternehmer selbst dabei sein.

Digital

2:56 Google, WhatsApp & Co erfahren viel Privates

10:50 «Facebook macht uns hohl und narzisstisch»

08:37 Macht und Misstrauen der Untertanen

18.10.2013 Fenster auf!

18.10.2013 Online-Unis auf Studentenfang

18.10.2013 Im Netz

Mobilität

Wie soll und wird unsere Mobilität in der Zukunft aussehen (müssen)? Der TA diskutiert diese Fragen – mit Ihnen.

Forum Mobilität 2025, News und Hintergründe

PERSONAL TIMELINE

2008 2010 2011 2013 2015

LINUX IN 2008

AUTONOMY TAXONOMY

- ALFUS Autonomy levels definition:
 - LEVEL 5: Autonomous (providing a description)
 - LEVEL 4: Human Aided (providing a goal)
 - LEVEL 3: Human Directed (waypoints)
 - LEVEL 2: Tele-operation (tablet control)
 - LEVEL 1: Remote Control (model airplane)

AUTONOMOUS EXPLORATION

IROS 2012, Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee Lee, Lorenz Meier, Petri Tanskanen, and Mard Politica Color

NEW FRONTIERS FOR LINUX

- Obstacle detection and avoidance
 - Lidar
 - IR / Thermal
- GPS denied navigation
 - Optical flow
 - Visual inertial odometry
- Airframes beyond quadrotors
 - VTOL
 - Others

NEW FULL 3D ROS SIMULATION

VTOL CONTROL

HARDWARE AND SOFTWARE

Autopilot Hardware

Autopilot Platform

http://pixhawk.org

http://px4.io

IMPACT

- Widely used in academia (ETH, CMU, UZH, DLR, MIT, ...)
- Platform for third-party autopilots (e.g. APM)
- Widely adopted hardware
 - 3D Robotics (hardware development partner)
 - 3rd party producers of Pixhawk
 - 3rd party derived designs (Gumstix AeroCore)

OPEN HARDWARE WORKFLOW

Developers

designs

Unproven designs

prototypes

Proven and tested designs

Community

Review, consolidation, coordination

OPEN SOURCE COLLABORATION

APM Dev team on middleware

OSRF / ETH Zurich on ROS Simulator

Paul Riseborough on EKF Fusion framework

Pavel Kirienko on UAVCAN

AUTOPILOT — PIXHAWK

- Flight Management
 Unit Autopilot +
 Mission Manager
- 168 MHz Cortex M4F (FPU, 192 KB RAM, 1 MB flash)
- 10 DOF sensors
- Lots of connectivity (including CAN)

OPTICAL FLOW MODULE

400 Hz optical flow, 3 m/s/m velocity (ICRA 2013 paper)

CAN ECOSYSTEM — PIXHAWK ESC

- Current embedded buses (PWM, I2C) are limited:
 - Signal integrity (not differential)
 - Bandwith
 - Feedback
- Pixhawk ESC design based on CAN, open hardware

PX4 SOFTWARE DESIGN

- Reusing existing standards
- MAVLink
- UAVCAN comms
- POSIX-style threading
- POSIX-style C and driver API
- Publish / subscribe design
- BSD

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SITUATION: THERE ARE 15 COMPETING STANDARDS.

PX4 SOFTWARE ARCHITECTURE

- Layer model
- Multiple applications per layer
- pub() / sub()application interface
- Generalized I/O interface (supports e.g. CAN or PWM)

Navigation / Trajectory Control Position Control Attitude Control State Estimation PX4 Object Request Broker (uORB) **NuttX RTOS PX4 Sensor Drivers PX4 Actuator Drivers**

SAFETY REQUIREMENTS

Safety Requirements

- Prevent midair collisions (separation, transponder)
- Prevent injuries on ground (parachute)
- Limit the scope of certification (safety module)

Safety Block reuse

- Pixhawk offers dedicated safety processor
- Certifying this part would make any system comply

LIGHTWEIGHT ORB — PUBLISHING

- Flat address space in NuttX
- uORB, lightweight object request broker

• publish:

```
topic_handle = orb_advertise(ORB_ID(random_integer), &rd);
```

subscribe:

```
topic_handle = orb_subscribe(ORB_ID(random_integer));
```


SHELL AND SYSTEM STARTUP

- Shell via UART / USB
- Runtime configurable
- Bash-like startup scripts
- Automatic detection of peripherals and sensors ("plug and play")
- Supports custom configurations

#!nsh

mount microSD

Mount /dev/mmcsd0 /fs/microsd

start uORB
uorb start

PX4 PLATFORM PORTABILITY

COMMUNICATION — MAVLINK

- Low-bandwidth protocol
 - -8 bytes overhead, up to 255 systems
 - One to one and swarm support
- Widespread use in low-cost UAVs
 - PX4
 - ArduPilotMega
 - UAVDevBoard
 - Paparazzi Port

COMPANION COMPUTER

- Pixhawk project runs distributed estimation
 & control on Linux and autopilot since 2009
- Higher level flight control on companion computer
- Lower level flight control on autopilot

http://wiki.ros.org/mavros

ARCHITECTURE FLEXIBILITY

CONTINOUS INTEGRATION

Unit testing on Travis

Hardware testing in Hans

Software-in-the-Loop testing in Jenkins

EXCURSION: QGROUNDCONTROL 2.3

SETUP EXPERIENCE

RC CONFIGURATION

SENSOR CONFIGURATION

RTL CONFIGURATION

Dronecode FRONTIERS

- Documentation
- Link Security / Safety Standard
- Convergence on simulation environment
- Convergence on post-flight data processing

THANKS!

http://px4.jo