
Application of Data Fusion
to Aerial Robotics

Paul Riseborough
March 24, 2015

Outline

• Introduction to APM project
• What is data fusion and why do we use

it?
• Where is data fusion used in APM?
• Development of EKF estimator for APM

navigation
– Problems and Solutions

• Future developments
• Questions

APM Overview

• Worlds largest open source UAV autopilot project
– Over 100,000 users (consumer, hobbyist, education

and commercial)

• Multi Vehicle
– Fixed wing planes
– multi rotors & traditional helicopters
– ground rovers

• Multi Platform
– Atmega 2560
– ARM Cortex M4
– Embedded Linux

Flight Performance Evolution www.youtube.com/watch?v=XfvDwI4YVGk

Hardware Evolution

https://www.youtube.com/watch?v=XfvDwI4YVGk

What Is / Why Use Data
Fusion

• In our context
– Processing of data from multiple sources to estimate the internal

states of the vehicle

• Data fusion enables use of multiple low cost sensors to
achieve required performance and robustness
– Faulty sensors can be detected using data consistency checks
– Effect of uncorrelated sensor noise and errors is reduced
– Complementary sensing modalities can be combined (inertial,

vision, air pressure, magnetic, etc)

• The ‘Holy Grail’ is reliable and accurate estimation of vehicle
states, all the time, everywhere and using low cost sensors
– Still the weakest link in the chain for micro UAS
– Failure can result in un-commanded flight path changes and loss of

control

Data Fusion in APM

• Used to estimate the following:
– Vehicle position, velocity & orientation
– Wind speed & direction
– Rate gyro and accelerometer offsets
– Airspeed rate of change
– Airspeed scale factor error
– Height above ground
– Magnetometer offset errors
– Compass motor interference (developmental)
– Battery condition (developmental)

Data Fusion in APM

• Techniques:
– Complementary Filters

• Computationally cheap – can run on 8bit micros
• Used for inertial navigation on APM 2.x hardware
• Used to combine air data and inertial data for plane speed and

height control

– Nonlinear Least Squares
• Batch processing for sensor calibration

– Extended Kalman Filters
• Airspeed sensor calibration, 3-states
• Flight vehicle navigation, 22-states, only runs on 32-bit micros
• Camera mount stabilisation, 9 states, only runs on 32-bit

micros

Development of an EKF
Estimator for APM

What is an EKF?
• EKF = ‘Extended Kalman Filter’
• Enables internal states to be estimated from measurements for non-

linear systems (the Kalman Filter or KF uses a linear system model)
• Assumes zero mean Gaussian errors in models and measured data

Predict
States
Predict
States

Predict
Covariance

Matrix

Predict
Covariance

Matrix

Update
States
Update
States

Update
Covariance

Matrix

Update
Covariance

Matrix

Measurements

Fusion

IMU data

Prediction

variances
covariances

Multiply
‘innovations’ by
the ‘Kalman
Gain’ to get state
corrections

EKF Processing Steps

• The EKF consists of the following stages:
– Initialisation of States and Covariance Matrix
– State Prediction
– Covariance Prediction
– Measurement Fusion which consists of

• Calculation of innovations
• Update of states using the product of innovations

and ‘Kalman Gains’
• Update of the ‘Covariance Matrix’

State Prediction
• Standard strap-down inertial navigation equations are

used to calculate the change in orientation, velocity and
position since the last update.
– Uses Inertial Measurement Unit (IMU) data

• Rate gyroscopes
• Accelerometers

– Local North East Down reference frame
– IMU data is corrected for earth rotation, sensor bias and coning

errors
– Bias errors, scale factor errors and vibration effects are major

error sources
– Inertial solution is only useful for about 5 to 10 seconds without

correction
– In run bias drift for uncompensated gyros can be up to 5 deg/sec

for large temperature swings!

state 1

state 2

When errors in states are
uncorrelated, the covariances
(off-diagonal elements) are
zero.

When errors in states are
correlated the covariances
(off diagonal elements) are
non-zero.

What is the ‘Covariance Matrix’ ?

Defines the distribution of error for
each state and the correlation in
error between states Expected value

Covariance Prediction
• The uncertainty in the states should always grow

over time (until a measurement fusion occurs).
• The EKF linearises the system equations about

the current state estimate when estimating the
growth in uncertainty

Process noise due
to IMU errors

Additional process noise
used to stabilise the filter

State and control Jacobians

Covariance Matrix

What is the ‘Innovation’ ?

• Difference between a measurement predicted
by the filter and what is measured by the
sensor.

• Innovations are multiplied by the ‘Kalman Gain’
matrix to calculate corrections that are applied
to the state vector

• Ideally innovations should be zero mean with a
Gaussian noise distribution (noise is rarely
Gaussian).

• Presence of bias indicates missing states in
model

Innovation Example – GPS Velocities

Taken from a flight of Skyhunter 2m wingspan UAV running
APMPlane on a Pixhawk flight computer and a u-blox LEA-6H
GPS

Measurement Fusion
• Updates the state estimates and covariance matrix using

measurements.
• The covariance will always decrease after measurements are fused

provided new information is gained.

Kalman Gain:

Innovation:

Covariance Update:

State Update:

Measurement covariance

Actual measurement

Predicted measurement

Navigation EKF Implementation
• 22 State Navigation EKF, where states are:

– Angular position (Quaternions)
– Velocity (NED)
– Position (NED)
– Wind (NE)
– Gyro delta angle bias vector (XYZ)
– Accelerometer bias (Z only)
– Magnetometer bias errors (XYZ)
– Earth magnetic field vector (NED)

• Single precision math throughout
• C++ library AP_NavEKF, containing 5200 SLOC
• With all optimisations enabled, uses 8% of 168MHz STM32

micro running at a 400Hz prediction rate
https://github.com/diydrones/ardupilot/blob/master/libraries/AP
_NavEKF/

Sensing
• Dual IMU sensors (body angular rates and

specific forces)
– IMU data is used for state prediction only, it is not

fused as an observation

• GPS (Lat/Lon/Alt and local earth frame
velocity)

• 3-Axis magnetometer
• Barometric Altitude
• True Airspeed
• Range finder (range to ground)
• Optical flow sensor (optical and inertial

sensor delta angles)

Problem 1: Processor Utilisation

• Significant emphasis on computational efficency...
– Limited processing: 168MHz STM32
– Ardupilot is single threaded
– 400Hz update rate
– Try not to take more than 1250micro sec for worst case (50% of total

frame time)

• Implementation:
– Matlab Symbolic Toolbox used to derive algebraic equations.
– Symbolic objects are optimized and converted to C-code fragments

using custom script files. Current process is clunky. Mathworks
proprietary converters cannot handle problem size.

Efficient Algorithms
• Solutions: Covariance Prediction

– Implemented as explicit algebraic equations (Matlab>>C)
• Auto generated C++ code from Symbolic toolbox text output
• 5x reduction in floating point operations over matrix math for the covariance prediction

– Asyncronous runtime
• Execution of covariance prediction step made conditional on time, angular movement and

arrival of observation data.

• Solutions: Measurement Fusion
– Sequential Fusion: For computationally expensive sensor fusion steps (eg

magnetometer or optical flow), the X,Y,Z components can be fused sequentially,
and if required, performed on consecutive 400Hz frames to level load

– Adaptive scheduling of expensive fusion operations, based on importance and
staleness of data can be used to level load.

– Exploit sparseness in observation Jacobian to reduce cost of covariance update

• Problems
– Stability: sequential fusion reduces filter stability margins >> care is taken to

maintain positive variances (diagonals) and symmetry of covariance matrix
– Jitter: Jitter associated with servicing sensor interrupts. Recent improvements to

APM code have significantly reduced problems in this area

Problem 2: Bad Data

• Broad consumer/commercial adoption of Ardupilot = lots of
corner cases

• Over 90% of development work is about ‘corner cases’
relating to bad sensor data including:

– IMU gyro and accelerometer offsets
– IMU aliasing due to platform vibration
– GPS glitches and loss of lock
– Barometer drift
– Barometer disturbances due to aerodynamic effects (position error,

ground effect, etc)
– Magnetometer calibration errors and electrical interference
– Range finder drop-outs and false readings
– Optical flow dropouts and false readings

Solutions for Bad Data

• IMU bias estimation (XYZ gyro and Z accel)
– XY accel bias is weakly observable for gentle flight profiles and is

difficult to learn in the time frame required to be useful

• Innovation consistency checks on all measurements
• Rejection Timeouts

– Dead reckoning only possible for up to 10s with our cheap sensors
– GPS and baro data rejection has a timeout followed by a reset to sensor

data

• GPS glitch recovery logic
– Intelligent reset to match inertial sensors after large GPS glitch

• Aliasing Detection
– If GPS vertical velocity and barometer innovations are same sign and

both greater than 3-Sigma, aliasing is likely.

• Dual accelerometers combined with variable weighting
– Weighting based on innovation consistency (lower innovation = higher

weight)
– Different sample rates (1000 and 800 Hz) reduce likelihood both will

alias badly

Problem 3: Update Noise
• ‘Text Book’ implementation of an EKF produces steps in state

estimates when observations are fused and states updated.
– APM multirotor cascaded control loops are vulnerable to this type of noise due

to use of cascaded PID controllers and lack of noise filtering on motor demands.

• Solved by applying state correction incrementally across time to
next measurement

– Reduces filter stability margins

‘truth’
States Predicted
Using Inertial Data Corrections From Fusing

Measurements

time

state

Problem 4: Measurement Latency

• Observations (eg GPS) are delayed relative to inertial (IMU) data
– Introduces errors and filter stability

• Potential Solutuions
1. Buffer state estimates and use stored state from measurement time horizon

when calculating predicted measurement used for data fusion step.
– Assumes covariance does not change much across internal from measurement time horizon

to current time
– Not good for observations in body frame that have significant delays
– Computationally cheap and is method used by current APM EKF

2. Buffer IMU data and run EKF behind real time with a moving fusion time
horizon. Use buffered inertial data to predict the EKF solution forward to the
current time horizon each time step

– Too memory and computationally expensive for implementation on STM32

3. Same as 2. but a simple observer structure is used to maintain a state
estimate at the current time horizon, tracking the EKF estimate at the fusion
time horizon

– Recent theoretical work by Alireza Khosravian from ANU (Australian National University)
– Robustness benefits of option 2, but computationally cheap enough to run on an STM32
– Will be implemented in future APM

Optical Flow Fusion
• Why?

– Outdoor landing and takeoff
– Indoor station keeping

• Uses a PX4Flow smart camera
• Images and gyro rates sampled at 400Hz
• Shift between images converted to

equivalent angular rate
– Flow Rate = pixels_moved / delta_time *

pixels_per_radian

• Gyro and flow rates accumulated as delta
angles and used by the EKF at 10Hz

• Observability
– If velocity is non-zero and known (eg GPS),

height is observable
– If height is known, velocity is observable

Velocity

Angular Rate

R
a
n
g
e

Flow rate = Angular Rate + Velocity / Range

Optical Flow Design Challenges
• Accurate time alignment of gyro and flow measurements

required
– Misalignment causes coupling between body angular motion and LOS

rates which destabilizes velocity control loop.
– Effect of misalignment worsens with height

• Focal length uncertainty and lens distortion
– Causes coupling between body angular motion and LOS rates which

destabilizes velocity control loop.
– Can vary 10% from manufacturers stated value
– Sensors must allow for storage of calibration coefficients
– Can be estimated in flight given time

• Assumption of flat level terrain
• Scale errors due to poor focus, contrast

– Innovation consistency checks

• Moving background

Optical Flow On Arducopter

• Optical Flow Demo
– www.youtube.com/watch?

v=9kBg0jEmhzM

https://www.youtube.com/watch?v=9kBg0jEmhzM

Lessons Learned
• Large efficiency gains using scalar operations on the STM32

micro compared to ‘brute-force’ matrix math
• Stability challenges due to use of single precision operations

limit the number of states that can be used and require
scaling of some states to reduce impact of precision loss.

• It’s all about the corner cases!
• 90% of code maintenance has been in the state machine and

related data checks. These need to be separated from the
core filter maths as much as is practical.

• A simple cost effective way of calibrating the MEMS sensors
for thermal drift is required.

• Use of magnetometers is problematic in our application
– Interference from electric power system
– Widespread use of magnets to attach hatches in planes !!
– Power-up can be anywhere - car roof, in the trunk next to large

loudspeaker magnets

Where To Next?
• New derivation for pose estimation based on use of a rotation

vector for attitude estimation "Rotation Vector in Attitude Estimation",
Mark E. Pittelkau, Journal of Guidance, Control, and Dynamics, 2003

– Prototype in Ardupilot: 9-state gimbal estimator
– Reduces computational load (3 vs 4 attitude states)
– Reduces issues with linearization of quaternion parameters with large

state uncertainty.
– Enables bootstrap alignment from unknown initial orientation on moving

platforms including gyro bias estimation
– https://

github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_Small
EKF.cpp

• Change measurement latency compensation to use method
developed by A. Khosravian, et.al.

– “Recursive Attitude Estimation in the Presence of Multi-rate and Multi-
delay Vector Measurements”, A Khosravian, J Trumpf, R Mahony, T Hamel,
Australian National University

– Will improve filter robustness and enable better fusion of delayed body
frame measurements from optical sensors.

https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_SmallEKF.cpp
https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_SmallEKF.cpp
https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_SmallEKF.cpp

Where To Next?
• Learning of IMU offsets vs temperature

– Offsets learned in flight could be combined with a data clustering
algorithm to produce a temperature dependent calibration that learns
across the life of the sensor.

• Tightly Coupled GPS fusion:
– Use individual satellite pseudo range and range rate observations.
– Better robustness to multi-path
– Eliminate reliance on receiver motion filter
– Requires double precision operations for observation models

• Move to a more flexible architecture that enables vehicle
specific state models and arbitrary sensor combinations

– Enables full advantage to be taken of multiple IMU units
– Use of vehicle dynamic models extends period we can dead-reckon

without GPS.
– Requires good math library support (breaking news - we now have Eigen 3

support in PX4 Firmware!!)

Flexible Architecture State Estimator
• Common and platform/application

specific states in separate regions in
the state vector and covariance
matrix

• Use of Eigen or equivalent matrix
library to take advantage of
sparseness and structure

• Generic observation models
• Position
• Velocity
• Body relative LOS rate
• Inertial LOS rate
• Body relative LOS angle
• Inertial LOS angle
• Range
• Delta Range
• Delta Range Rate
• Airspeed
• Magnetometer

Common States

Covariance Matrix

Platform Specific States

Questions? paul@3drobotics.com

SUPPORTING SLIDES
DERIVATION OF FILTER

EQUATIONS

AP_NavEKF Plant Equations
% Define the state vector & number of states
stateVector =
[q0;q1;q2;q3;vn;ve;vd;pn;pe;pd;dax_b;day_b;daz_b;dvz_b;vwn;vwe;magN;magE;magD;magX;magY;magZ];
nStates=numel(stateVector);

% define the measured Delta angle and delta velocity vectors
da = [dax; day; daz];
dv = [dvx; dvy; dvz];

% define the delta angle and delta velocity bias errors
da_b = [dax_b; day_b; daz_b];
dv_b = [0; 0; dvz_b];

% derive the body to nav direction cosine matrix
Tbn = Quat2Tbn([q0,q1,q2,q3]);

% define the bias corrected delta angles and velocities
dAngCor = da - da_b;
dVelCor = dv - dv_b;

% define the quaternion rotation vector
quat = [q0;q1;q2;q3];

AP_NavEKF Plant Equations
% define the attitude update equations
delQuat = [1;
 0.5*dAngCor(1);
 0.5*dAngCor(2);
 0.5*dAngCor(3);
];
qNew = QuatMult(quat,delQuat);

% define the velocity update equations
vNew = [vn;ve;vd] + [gn;ge;gd]*dt + Tbn*dVelCor;

% define the position update equations
pNew = [pn;pe;pd] + [vn;ve;vd]*dt;

% define the IMU bias error update equations
dabNew = [dax_b; day_b; daz_b];
dvbNew = dvz_b;

% define the wind velocity update equations
vwnNew = vwn;
vweNew = vwe;

AP_NavEKF Plant Equations
% define the earth magnetic field update equations
magNnew = magN;
magEnew = magE;
magDnew = magD;

% define the body magnetic field update equations
magXnew = magX;
magYnew = magY;
magZnew = magZ;

% Define the process equations output vector
processEqns =
[qNew;vNew;pNew;dabNew;dvbNew;vwnNew;vweNew;magNnew;magEnew;magDnew;magXnew;magYnew;
magZnew];

AP_SmallEKF Plant Equations
% define the measured Delta angle and delta velocity vectors
dAngMeas = [dax; day; daz];
dVelMeas = [dvx; dvy; dvz];

% define the delta angle bias errors
dAngBias = [dax_b; day_b; daz_b];

% define the quaternion rotation vector for the state estimate
estQuat = [q0;q1;q2;q3];

% define the attitude error rotation vector, where error = truth - estimate
errRotVec = [rotErr1;rotErr2;rotErr3];

% define the attitude error quaternion using a first order linearisation
errQuat = [1;0.5*errRotVec];

% Define the truth quaternion as the estimate + error
truthQuat = QuatMult(estQuat, errQuat);

% derive the truth body to nav direction cosine matrix
Tbn = Quat2Tbn(truthQuat);

% define the truth delta angle
% ignore coning acompensation as these effects are negligible in terms of
% covariance growth for our application and grade of sensor
dAngTruth = dAngMeas - dAngBias - [daxNoise;dayNoise;dazNoise];

% Define the truth delta velocity
dVelTruth = dVelMeas - [dvxNoise;dvyNoise;dvzNoise];

% define the attitude update equations
% use a first order expansion of rotation to calculate the quaternion increment
% acceptable for propagation of covariances
deltaQuat = [1;
 0.5*dAngTruth(1);
 0.5*dAngTruth(2);
 0.5*dAngTruth(3);
];
truthQuatNew = QuatMult(truthQuat,deltaQuat);
% calculate the updated attitude error quaternion with respect to the previous estimate
errQuatNew = QuatDivide(truthQuatNew,estQuat);
% change to a rotaton vector - this is the error rotation vector updated state
errRotNew = 2 * [errQuatNew(2);errQuatNew(3);errQuatNew(4)];

AP_SmallEKF Plant Equations

% define the velocity update equations
% ignore coriolis terms for linearisation purposes
vNew = [vn;ve;vd] + [0;0;gravity]*dt + Tbn*dVelTruth;

% define the IMU bias error update equations
dabNew = [dax_b; day_b; daz_b];

% Define the state vector & number of states
stateVector = [errRotVec;vn;ve;vd;dAngBias];
nStates=numel(stateVector);

AP_SmallEKF Plant Equations

	Slide 1
	Outline
	APM Overview
	Slide 4
	Hardware Evolution
	What Is / Why Use Data Fusion
	Data Fusion in APM
	Data Fusion in APM
	Slide 9
	What is an EKF?
	EKF Processing Steps
	State Prediction
	Slide 13
	Covariance Prediction
	What is the ‘Innovation’ ?
	Innovation Example – GPS Velocities
	Measurement Fusion
	Navigation EKF Implementation
	Sensing
	Problem 1: Processor Utilisation
	Efficient Algorithms
	Problem 2: Bad Data
	Solutions for Bad Data
	Problem 3: Update Noise
	Problem 4: Measurement Latency
	Optical Flow Fusion
	Optical Flow Design Challenges
	Optical Flow On Arducopter
	Lessons Learned
	Where To Next?
	Where To Next?
	Flexible Architecture State Estimator
	Slide 33
	Supporting SlideS Derivation of Filter Equations
	AP_NavEKF Plant Equations
	AP_NavEKF Plant Equations
	AP_NavEKF Plant Equations
	AP_SmallEKF Plant Equations
	AP_SmallEKF Plant Equations
	AP_SmallEKF Plant Equations

