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APM Overview

• Worlds largest open source UAV autopilot project
– Over 100,000 users (consumer, hobbyist, education 

and commercial)

• Multi Vehicle
– Fixed wing planes
– multi rotors & traditional helicopters
– ground rovers

• Multi Platform
– Atmega 2560
– ARM Cortex M4
– Embedded Linux





Flight Performance Evolution www.youtube.com/watch?v=XfvDwI4YVGk

Hardware Evolution

https://www.youtube.com/watch?v=XfvDwI4YVGk


What Is / Why Use Data 
Fusion

• In our context
– Processing of data from multiple sources to estimate the internal 

states of the vehicle

• Data fusion enables use of multiple low cost sensors to 
achieve required performance and robustness
– Faulty sensors can be detected using data consistency checks
– Effect of uncorrelated sensor noise and errors is reduced
– Complementary sensing modalities can be combined (inertial, 

vision, air pressure, magnetic, etc) 

• The ‘Holy Grail’ is reliable and accurate estimation of vehicle 
states, all the time, everywhere and using low cost sensors
– Still the weakest link in the chain for micro UAS
– Failure can result in un-commanded flight path changes and loss of 

control



Data Fusion in APM

• Used to estimate the following:
– Vehicle position, velocity & orientation
– Wind speed & direction
– Rate gyro and accelerometer offsets
– Airspeed rate of change
– Airspeed scale factor error
– Height above ground
– Magnetometer offset errors
– Compass motor interference (developmental)
– Battery condition (developmental)



Data Fusion in APM

• Techniques:
– Complementary Filters

• Computationally cheap – can run on 8bit micros
• Used for inertial navigation on APM 2.x hardware
• Used to combine air data and inertial data for plane speed and 

height control

– Nonlinear Least Squares
• Batch processing for sensor calibration

– Extended Kalman Filters
• Airspeed sensor calibration, 3-states
• Flight vehicle navigation, 22-states, only runs on 32-bit micros
• Camera mount stabilisation, 9 states, only runs on 32-bit 

micros



Development of an EKF 
Estimator for APM



What is an EKF?
• EKF = ‘Extended Kalman Filter’
• Enables internal states to be estimated from measurements for non-

linear systems (the Kalman Filter or KF uses a linear system model)
• Assumes zero mean Gaussian errors in models and measured data
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EKF Processing Steps

• The EKF consists of the following stages:
– Initialisation of States and Covariance Matrix
– State Prediction 
– Covariance Prediction
– Measurement Fusion which consists of

• Calculation of innovations
• Update of states using the product of innovations 

and ‘Kalman Gains’
• Update of the ‘Covariance Matrix’



State Prediction
• Standard strap-down inertial navigation equations are 

used to calculate the change in orientation, velocity and 
position since the last update.
–  Uses Inertial Measurement Unit (IMU) data

• Rate gyroscopes
• Accelerometers

– Local North East Down reference frame
– IMU data is corrected for earth rotation, sensor bias and coning 

errors
– Bias errors, scale factor errors and vibration effects are major 

error sources
– Inertial solution is only useful for about 5 to 10 seconds without 

correction
– In run bias drift for uncompensated gyros can be up to 5 deg/sec 

for large temperature swings!



state 1

state 2

When errors in states are 
uncorrelated, the covariances 
(off-diagonal elements) are 
zero.

When errors in states are 
correlated the covariances 
(off diagonal elements) are 
non-zero.

What is the ‘Covariance Matrix’ ?

Defines the distribution of error for 
each state and the correlation in 
error between states Expected value



Covariance Prediction
• The uncertainty in the states should always grow 

over time (until a measurement fusion occurs).
• The EKF linearises the system equations about 

the current state estimate when estimating the 
growth in uncertainty

Process noise due
to IMU errors

Additional process noise 
used to stabilise the filter

State and control Jacobians

Covariance Matrix



What is the ‘Innovation’ ?

• Difference between a measurement predicted 
by the filter and what is measured by the 
sensor.

• Innovations are multiplied by the ‘Kalman Gain’ 
matrix to calculate corrections that are applied 
to the state vector

• Ideally innovations should be zero mean with a 
Gaussian noise distribution (noise is rarely 
Gaussian).

• Presence of bias indicates missing states in 
model



Innovation Example – GPS Velocities

Taken from a flight of Skyhunter 2m wingspan UAV running 
APMPlane on a Pixhawk flight computer and a u-blox LEA-6H 
GPS



Measurement Fusion
• Updates the state estimates and covariance matrix using 

measurements.
• The covariance will always decrease after measurements are fused 

provided new information is gained.

Kalman Gain:

Innovation:

Covariance Update:

State Update:

Measurement covariance

Actual measurement

Predicted measurement



Navigation EKF Implementation
• 22 State Navigation EKF, where states are:

– Angular position (Quaternions)
– Velocity (NED)
– Position (NED)
– Wind (NE)
– Gyro delta angle bias vector (XYZ)
– Accelerometer bias (Z only)
– Magnetometer bias errors (XYZ)
– Earth magnetic field vector (NED)

• Single precision math throughout
• C++ library AP_NavEKF, containing 5200 SLOC
• With all optimisations enabled, uses 8% of 168MHz STM32 

micro running at a 400Hz prediction rate
https://github.com/diydrones/ardupilot/blob/master/libraries/AP
_NavEKF/



Sensing
• Dual IMU sensors (body angular rates and 

specific forces)
– IMU data is used for state prediction only, it is not 

fused as an observation

• GPS (Lat/Lon/Alt and local earth frame 
velocity)

• 3-Axis magnetometer
• Barometric Altitude
• True Airspeed
• Range finder (range to ground)
• Optical flow sensor (optical and inertial 

sensor delta angles)



Problem 1: Processor Utilisation

• Significant emphasis on computational efficency...
– Limited processing: 168MHz STM32
– Ardupilot is single threaded
– 400Hz update rate
– Try not to take more than 1250micro sec for worst case (50% of total 

frame time)

• Implementation: 
– Matlab Symbolic Toolbox used to derive algebraic equations. 
– Symbolic objects are optimized and converted to C-code fragments 

using custom script files. Current process is clunky. Mathworks 
proprietary converters cannot handle problem size.



Efficient Algorithms
• Solutions: Covariance Prediction

– Implemented as explicit algebraic equations (Matlab>>C)
• Auto generated C++ code from Symbolic toolbox text output
• 5x reduction in floating point operations over matrix math for the covariance prediction

– Asyncronous runtime
• Execution of covariance prediction step made conditional on time, angular movement and 

arrival of observation data.

• Solutions: Measurement Fusion
– Sequential Fusion: For computationally expensive sensor fusion steps (eg 

magnetometer or optical flow), the X,Y,Z components can be fused sequentially, 
and if required, performed on consecutive 400Hz frames to level load

– Adaptive scheduling of expensive fusion operations, based on importance and 
staleness of data can be used to level load.

– Exploit sparseness in observation Jacobian to reduce cost of covariance update

• Problems
– Stability: sequential fusion reduces filter stability margins >> care is taken to 

maintain positive variances (diagonals) and symmetry of covariance matrix
– Jitter: Jitter associated with servicing sensor interrupts. Recent improvements to 

APM code have significantly reduced problems in this area



Problem 2: Bad Data

• Broad consumer/commercial adoption of Ardupilot = lots of 
corner cases

• Over 90% of development work is about ‘corner cases’ 
relating to bad sensor data including:

– IMU gyro and accelerometer offsets
– IMU aliasing due to platform vibration
– GPS glitches and loss of lock
– Barometer drift
– Barometer disturbances due to aerodynamic effects (position error, 

ground effect, etc)
– Magnetometer calibration errors and electrical interference
– Range finder drop-outs and false readings
– Optical flow dropouts and false readings



Solutions for Bad Data

• IMU bias estimation (XYZ gyro and Z accel)
– XY accel bias is weakly observable for gentle flight profiles and is 

difficult to learn in the time frame required to be useful

• Innovation consistency checks on all measurements
• Rejection Timeouts

– Dead reckoning only possible for up to 10s with our cheap sensors
– GPS and baro data rejection has a timeout followed by a reset to sensor 

data

• GPS glitch recovery logic
– Intelligent reset to match inertial sensors after large GPS glitch

• Aliasing Detection
– If GPS vertical velocity and barometer innovations are same sign and 

both greater than 3-Sigma, aliasing is likely.

• Dual accelerometers combined with variable weighting
– Weighting based on innovation consistency (lower innovation = higher 

weight)
– Different sample rates (1000 and 800 Hz) reduce likelihood both will 

alias badly



Problem 3: Update Noise
• ‘Text Book’ implementation of an EKF produces steps in state 

estimates when observations  are fused and states updated.
– APM multirotor cascaded control loops are vulnerable to this type of noise due 

to use of cascaded PID controllers and lack of noise filtering on motor demands.

• Solved by applying state correction incrementally across time to 
next measurement

– Reduces filter stability margins

‘truth’
States Predicted 
Using Inertial Data Corrections From Fusing 

Measurements

time

state



Problem 4: Measurement Latency

• Observations (eg GPS) are delayed relative to inertial (IMU) data
– Introduces errors and filter stability

• Potential Solutuions
1. Buffer state estimates and use stored state from measurement time horizon 

when calculating predicted measurement used for data fusion step.
– Assumes covariance does not change much across internal from measurement time horizon 

to current time
– Not good for observations in body frame that have significant delays
– Computationally cheap and is method used by current APM EKF

2. Buffer IMU data and run EKF behind real time with a moving fusion time 
horizon. Use buffered inertial data to predict the EKF solution forward to the 
current time horizon each time step

– Too memory and computationally expensive for implementation on STM32

3. Same as 2. but a simple observer structure is used to maintain a state 
estimate at the current time horizon, tracking the EKF estimate at the fusion 
time horizon

– Recent theoretical work by Alireza Khosravian from ANU (Australian National University)
– Robustness benefits of option 2, but computationally cheap enough to run on an STM32
– Will be implemented in future APM



Optical Flow Fusion
• Why?

– Outdoor landing and takeoff
– Indoor station keeping

• Uses a PX4Flow smart camera
• Images and gyro rates sampled at 400Hz
• Shift between images converted to 

equivalent angular rate
– Flow Rate = pixels_moved / delta_time * 

pixels_per_radian 

• Gyro and flow rates accumulated as delta 
angles and used by the EKF at 10Hz

• Observability
– If velocity is non-zero and known (eg GPS), 

height is observable
– If height is known, velocity is observable

Velocity

Angular Rate

R
a
n
g
e

Flow rate = Angular Rate + Velocity / Range



Optical Flow Design Challenges
• Accurate time alignment of gyro and flow measurements 

required
– Misalignment causes coupling between body angular motion and LOS 

rates which destabilizes velocity control loop.
– Effect of misalignment worsens with height

• Focal length uncertainty and lens distortion
– Causes coupling between body angular motion and LOS rates which 

destabilizes velocity control loop.
– Can vary 10% from manufacturers stated value
– Sensors must allow for storage of calibration coefficients
– Can be estimated in flight given time

• Assumption of flat level terrain
• Scale errors due to poor focus, contrast

– Innovation consistency checks

• Moving background



Optical Flow On Arducopter

• Optical Flow Demo
– www.youtube.com/watch?

v=9kBg0jEmhzM

https://www.youtube.com/watch?v=9kBg0jEmhzM


Lessons Learned
• Large efficiency gains using scalar operations on the STM32 

micro compared to ‘brute-force’ matrix math 
• Stability challenges due to use of single precision operations 

limit the number of states that can be used and require 
scaling of some states to reduce impact of precision loss.

• It’s all about the corner cases!
• 90% of code maintenance has been in the state machine and 

related data checks. These need to be separated from the 
core filter maths as much as is practical.

• A simple cost effective way of calibrating the MEMS sensors 
for thermal drift is required.

• Use of magnetometers is problematic in our application
– Interference from electric power system
– Widespread use of magnets to attach hatches in planes !!
– Power-up can be anywhere - car roof, in the trunk next to large 

loudspeaker magnets



Where To Next?
• New derivation for pose estimation based on use of a rotation 

vector for attitude estimation "Rotation Vector in Attitude Estimation", 
Mark E. Pittelkau, Journal of Guidance, Control, and Dynamics, 2003

– Prototype in Ardupilot: 9-state gimbal estimator
– Reduces computational load (3 vs 4 attitude states)
– Reduces issues with linearization of quaternion parameters with large 

state uncertainty.
– Enables bootstrap alignment from unknown initial orientation on moving 

platforms including gyro bias estimation
– https://

github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_Small
EKF.cpp

• Change measurement latency compensation to use method 
developed by A. Khosravian, et.al. 

– “Recursive Attitude Estimation in the Presence of Multi-rate and Multi-
delay Vector Measurements”, A Khosravian, J Trumpf, R Mahony, T Hamel, 
Australian National University

– Will improve filter robustness and enable better fusion of delayed body 
frame measurements from optical sensors.

https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_SmallEKF.cpp
https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_SmallEKF.cpp
https://github.com/diydrones/ardupilot/blob/master/libraries/AP_NavEKF/AP_SmallEKF.cpp


Where To Next?
• Learning of IMU offsets vs temperature

– Offsets learned in flight could be combined with a data clustering 
algorithm to produce a temperature dependent calibration that learns 
across the life of the sensor.

• Tightly Coupled GPS fusion:
– Use individual satellite pseudo range and range rate observations.
– Better robustness to multi-path
– Eliminate reliance on receiver motion filter
– Requires double precision operations for observation models

• Move to a more flexible architecture that enables vehicle 
specific state models and arbitrary sensor combinations

– Enables full advantage to be taken of multiple IMU units
– Use of vehicle dynamic models extends period we can dead-reckon 

without GPS.
– Requires good math library support (breaking news - we now have Eigen 3 

support in PX4 Firmware!!)



Flexible Architecture State Estimator 
• Common and platform/application 

specific states in separate regions in 
the state vector and covariance 
matrix

• Use of Eigen or equivalent matrix 
library to take advantage of 
sparseness and structure

• Generic observation models
• Position
• Velocity
• Body relative LOS rate
• Inertial LOS rate
• Body relative LOS angle
• Inertial LOS angle
• Range
• Delta Range
• Delta Range Rate
• Airspeed
• Magnetometer

Common States

Covariance Matrix

Platform Specific States



Questions? paul@3drobotics.com



SUPPORTING SLIDES
DERIVATION OF FILTER 

EQUATIONS



AP_NavEKF Plant Equations
% Define the state vector & number of states
stateVector = 
[q0;q1;q2;q3;vn;ve;vd;pn;pe;pd;dax_b;day_b;daz_b;dvz_b;vwn;vwe;magN;magE;magD;magX;magY;magZ];
nStates=numel(stateVector);
 
% define the measured Delta angle and delta velocity vectors
da = [dax; day; daz];
dv = [dvx; dvy; dvz];
 
% define the delta angle and delta velocity bias errors
da_b = [dax_b; day_b; daz_b];
dv_b = [0; 0; dvz_b];
 
% derive the body to nav direction cosine matrix
Tbn = Quat2Tbn([q0,q1,q2,q3]);
 
% define the bias corrected delta angles and velocities
dAngCor = da - da_b;
dVelCor = dv - dv_b;
 
% define the quaternion rotation vector
quat = [q0;q1;q2;q3];



AP_NavEKF Plant Equations
% define the attitude update equations
delQuat = [1;
    0.5*dAngCor(1);
    0.5*dAngCor(2);
    0.5*dAngCor(3);
    ];
qNew = QuatMult(quat,delQuat);
 
% define the velocity update equations
vNew = [vn;ve;vd] + [gn;ge;gd]*dt + Tbn*dVelCor;
 
% define the position update equations
pNew = [pn;pe;pd] + [vn;ve;vd]*dt;
 
% define the IMU bias error update equations
dabNew = [dax_b; day_b; daz_b];
dvbNew = dvz_b;
 
% define the wind velocity update equations
vwnNew = vwn;
vweNew = vwe;



AP_NavEKF Plant Equations
% define the earth magnetic field update equations
magNnew = magN;
magEnew = magE;
magDnew = magD;
 
% define the body magnetic field update equations
magXnew = magX;
magYnew = magY;
magZnew = magZ;
 
% Define the process equations output vector
processEqns = 
[qNew;vNew;pNew;dabNew;dvbNew;vwnNew;vweNew;magNnew;magEnew;magDnew;magXnew;magYnew;
magZnew];



AP_SmallEKF Plant Equations
% define the measured Delta angle and delta velocity vectors
dAngMeas = [dax; day; daz];
dVelMeas = [dvx; dvy; dvz];

% define the delta angle bias errors
dAngBias = [dax_b; day_b; daz_b];

% define the quaternion rotation vector for the state estimate
estQuat = [q0;q1;q2;q3];

% define the attitude error rotation vector, where error = truth - estimate
errRotVec = [rotErr1;rotErr2;rotErr3];

% define the attitude error quaternion using a first order linearisation
errQuat = [1;0.5*errRotVec];

% Define the truth quaternion as the estimate + error
truthQuat = QuatMult(estQuat, errQuat);

% derive the truth body to nav direction cosine matrix
Tbn = Quat2Tbn(truthQuat);



% define the truth delta angle
% ignore coning acompensation as these effects are negligible in terms of 
% covariance growth for our application and grade of sensor
dAngTruth = dAngMeas - dAngBias - [daxNoise;dayNoise;dazNoise];

% Define the truth delta velocity
dVelTruth = dVelMeas - [dvxNoise;dvyNoise;dvzNoise];

% define the attitude update equations
% use a first order expansion of rotation to calculate the quaternion increment
% acceptable for propagation of covariances
deltaQuat = [1;
    0.5*dAngTruth(1);
    0.5*dAngTruth(2);
    0.5*dAngTruth(3);
    ];
truthQuatNew = QuatMult(truthQuat,deltaQuat);
% calculate the updated attitude error quaternion with respect to the previous estimate
errQuatNew = QuatDivide(truthQuatNew,estQuat);
% change to a rotaton vector - this is the error rotation vector updated state
errRotNew = 2 * [errQuatNew(2);errQuatNew(3);errQuatNew(4)];

AP_SmallEKF Plant Equations



% define the velocity update equations
% ignore coriolis terms for linearisation purposes
vNew = [vn;ve;vd] + [0;0;gravity]*dt + Tbn*dVelTruth;

% define the IMU bias error update equations
dabNew = [dax_b; day_b; daz_b];

% Define the state vector & number of states
stateVector = [errRotVec;vn;ve;vd;dAngBias];
nStates=numel(stateVector);

AP_SmallEKF Plant Equations
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